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Abstract—Accurate motion capture and flexible retargeting
of underwater creatures such as fish remain to be difficult
due to the long-lasting challenges of marker attachment and
feature description for soft bodies in the underwater environment.
Despite limited new research progresses appeared in recent
years, the fish motion retargeting with a desirable motion
pattern in real-time remains elusive. Strongly motivated by
our ambitious goal of achieving high-quality data-driven fish
animation with a light-weight, mobile device, this paper develops
a novel framework of motion capturing and retargeting for
a fish. We capture the motion of actual fish by a monocular
camera without the utility of any marker. The elliptical Fourier
coefficients are then integrated into the contour-based feature
extraction process to analyze the fish swimming patterns. This
novel approach can obtain the motion information in a robust
way, with smooth medial axis as the descriptor for a soft fish
body. For motion retargeting, we propose a two-level scheme to
properly transfer the captured motion into new models, such as
2D meshes (with texture) generated from pictures or 3D models
designed by artists, regardless of different body geometry and
fin proportions among various species. Both motion capture and
retargeting processes are functioning in real time. Hence, the
system can simultaneously create fish animation with variation,
while obtaining video sequences of real fish by a monocular
camera.

Keywords — Fish Animation, Markerless Motion Capture,
Monocular Camera, Motion Retargeting

I. INTRODUCTION

Motion capture (or Mo-cap) has been widely used in video

game production and film industry for the last two decades,

with the goal of creating natural character animation and spe-

cial effects. Realistic motion data of an actor can be captured

by a mo-cap system and then retargeted to new characters,

creating animation with the same motion as the actor but with

new appearances. Nonetheless, traditional mo-cap systems

suffer from noisy motion data [1] [2] and specialized high-

end devices which are too expensive to afford by the general

public [3]. Moreover, it is difficult to attach markers to certain

types of characters such as underwater creatures (e.g., fish).

To address the limitations above, we develop a markerless

motion capture technique to record the motion of an underwa-

ter fish in this paper. Since the most movement of a fish takes

place in the horizontal plane, we simply employ a monocular

camera to record the fish movement from the top of a fish tank.

The swimming fish (i.e., foreground region) is segmented by

a background subtraction algorithm. Based on the extracted

fish contour, the head and tail can be located successively.

However, the accurate medial axis of a fish body serving as

a spine is difficult to represent, due to the asymmetric motion

of the fish fins. To solve this problem, we employ elliptical

Fourier coefficients [4] to convert the fish contour from the

original physical domain to the frequency domain, and then,

reconstruct it with fewer coefficients. Similar to the low pass

filter, it gives rise to a smoothed contour. Then a smooth

medial axis, which is considered as the deformable spine, can

be generated for the soft fish body. Finally, the remaining

feature points can be located based on the medial axis and

the original contour. By retargeting such feature points as

fish motion to 2D/3D meshes with texture information, the

final fish animation can be obtained. With our proposed data-

driven method, even the general public without specially-

trained artistic skills is capable of creating fish animation with

low-cost mobile devices, such as a cellphone with a camera.

Essentially, fish motion can be decomposed into two parts:

the global motion including position and orientation, and the

local motion which is the deformation under local coordinates.

The estimation and recovery of global motion are straightfor-

ward. As for the local deformation, simply scaling the motion

w.r.t. the skeleton according to the fish body ratio will cause

unnatural geometry distortion, especially in the vicinity of

the fins area. To address this problem, we propose a two-

level motion retargeting scheme, in which the local shape

transferring process is separated into two steps. At the first

step, we only transfer the body motion into the target model,

during which the junction points between the fish body and

two fish fins are regarded as a part of the fish body and can be

accurately retargeted. Afterwards, we transfer the fin motion

through the junction points, serving as both local control points

and relative positions of fin motion. With this two-level motion

retargeting scheme, we can properly transfer the motion of a

real fish into a target model. In addition, our system also allows

users to edit the retargeted frames to interactively fine tune the

final animation. In particular, the innovative contributions of

our research can be summarized as follows:

• We develop a mo-cap technique for fish animation with

low-cost device. Using a monocular camera, the motion

sequences of a real fish are captured and retargeted

to a 2D/3D fish or fish-like model in real time. With

comprehensive functionalities, our system also supports

interactions from users to edit retargeted frames for final

animation production.

• The smooth medial axis serving as the description of a
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soft fish body is hard to acquire due to the asymmetry of

the fins during fish swimming. We incorporate elliptical

Fourier coefficients into the contour-based feature extrac-

tion. Then, it is possible to reconstruct the contour with

low-frequency harmonics, which can effectively attenuate

asymmetry of the fins while preserving the global shape

of a fish body. Finally, a preferable medial axis can be

extracted.

• We propose a two-level motion retargeting scheme to

transfer the motion from an original fish sequence ac-

quired in a video to new models. The major challenge

is to handle various body proportions and fin locations.

In particular, we decompose the local motion retargeting

process into two steps. First, the motion of a fish body

is transferred to the target model, with the positions

of junction points determined. At the second step, the

motion of fins can be accurately retargeted with the

junction points, serving as both local control points and

relative positions of the fin motion.

II. RELATED WORK

Motion capture and motion retargeting have been studied

widely in computer vision and computer graphics. However,

both of them remain open and challenging problems. Given

the significant literature in these areas, we focus on the most

relevant researches.

Video-based Motion Capture. The mainstream mo-cap

system usually employs a number of synchronized cameras

to acquire multiple views of the character with markers or

sensors, which has been well studied in the existing litera-

ture [5]. Motion capture from the video is more challenging for

the lack of depth information and occlusion of feature points

or markers. Most video-based approaches estimate the pose

by searching from the state space [6] or relying on Bayesian

filtering with the prior models of dynamics [7] and focus on

human or articulated characters only [8] [9] [10]. In contrast,

our mo-cap system is designed for fish or fish-like creatures.

It is unworthy to pre-define the motion pattern for particular

non-human species. Therefore, we propose a feature-based

markerless motion capture approach which saves the costs of

prior dynamics construction or state-space searching.

In the field of motion capture for animals, Ju et al. [11]

present a mo-cap system for a bird but their method is marker-

based and needs multiple high-speed video cameras. Wilhelms

et al. [12] propose an interactive video-based mo-cap system

for character animation. They identify features and establish

feature relationships from frame to frame, but their method is

developed only for articulated characters such as horses. Lee et
al. [13] present a video-based fish animation generating system

which is the most similar work to ours, but their work relies

on multi-view cameras and doesn’t take the motion of fins into

consideration. Yu et al. [14] present a synthetic motion capture

to render plenty of fish at an interactive rate. However, the

motion data they use is generated from the simulation of the

biomechanical model, while we directly use captured videos

as a reliable data source.

Video-based motion capture can be regarded as extract-

ing motion from image sequences. There are some classic

approaches for point tracking [15] or object tracking [16].

Shi et al. present the famous KLT tracking algorithm [15]

to track good features which are selected under the principle

that a good feature is the one that can be tracked well. The

features selected by KLT tracker are mostly corners while the

body of fish is too flexible to obtain stable tracking across a

large number of frames. Comaniciu et al. [16] propose the

mean-shift tracking approach for real-time non-rigid object

tracking, which is used in the mo-cap system presented in [8]

to track the motion of a human body. However, the mean-shift

algorithm calculates the shift vector based on the histogram of

the object region, which makes it hard to track the patch of a

fish with its self-similar texture. In contrast, our contour-based

feature extraction avoids the direct tracking to a specific point

or patch, thus is able to provide robust motion information.

Motion Retargeting. Motion retargeting is a classic prob-

lem which aims to retarget motion from one character to

another while keeping styles of the original motion. Most

existing work is either offline or requires a large database

of example motion. An offline method presented by Gle-

icher [17] uses spacetime constraints on example motion.

The paper considers different segment lengths but identical

structure or characters with fewer degrees of freedom (DOF).

Similar limitations exist in many other offline methods. Shin et
al. [18] present an online method using inverse kinematics(IK),

but only take identical skeletal topologies into consideration.

Kulpa et al. [19] propose an approach to support different

numbers of bones in limbs by using IK in real time, but only

on humanoid topologies. Popović [20] applies the principles of

physical-based animation and constraint optimization formula-

tion on motion data, but like most other approaches, retargets

the motion to articulated figures only. An interesting method

proposed by Bregler [21] is able to retarget the motion from a

cartoon character to another, yet it needs the user to define each

key-shape motion to synthesize the final animation. Hornung et
al. propose a retargeting approach [22] similar to ours that can

animate photos of 2D characters. However, the motion types

are limited and the animation characters must be humanoid.

In terms of fish motion retargeting, it’s hard to treat the fish

as an articulated character and represent it with a traditional

skeleton model, due to the flexibility of the fish body and the

variable locations of the fins. The two-level retargeting scheme

we propose treats the fish topology as two parts. The body part

can handle the flexibility and the fin part is able to deal with

the various fin locations.

III. SYSTEM OVERVIEW

Our motion capture and retargeting technique aims at pro-

viding a framework to drive a 2D/3D fish or fish-like model

to swim lively with the same motion style as the real one in

the video. Fig. 1 shows the pipeline.

Motion Capture. After acquiring a swimming fish video,

we employ an adaptive background subtraction method:

ViBe [23] to detect the foreground of each frame. To eliminate
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c. Motion Retargeting 
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Texture 
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Fig. 1. Flow chart of our technique. (a)Motion capture of a swimming fish
in water. (b) Target model is constructed from a hand-drawn cartoon fish.
(c)Body motion, fin motion, and global motion are retargeted sequentially.
Both (a) and (c) are processed synchronously in real time.

salt and pepper noise, a morphological filter is applied to the

binary mask of the foreground pixels. Then the system marks

the salient connected components as the foreground objects.

Once the user selecting one object, the system will keep

tracking on it and regard it as the swimming fish. While the

fish is being tracked, its motion will be continuously recorded

by the contour-based feature extraction procedure and then

delivered to the motion retargeting module.

Target Model Construction. In Fig. 1(b), the target model

is constructed from a hand-drawn cartoon fish. The aim is

generating a target 2D/3D model with several control points to

achieve the animation. This task is processed off-line and only

once. Given a picture containing a cartoon fish, we preprocess

the image to acquire the contour, then the control points will

be extracted by the contour-based feature extraction process.

Finally, the fish model is generated by constrained Delaunay

triangulation [24]. For 3D model, we take a snapshot on the top

view of the fish model, extract the control points and finally

recover them to the 3D scene.

Motion Retargeting. The control points of the fish model

can be divided into two groups: body control points and fin

control points. The recorded motion consists of global motion

and local motion. At the first stage, we transfer the local

motion to the body control points of the fish model, then

deform the model with body control points only. Thus we

can obtain the positions of junction points, which are also

deformed as a local part of the fish body. At the second stage,

we transfer the local motion to the fin control points with

the help of junction points, then deform the fish model with

all control points. Afterwards, the final retargeted model is

obtained by applying rotation and translation transformation

according to the global motion. For shape deformation, we

choose a moving-least-squares (MLS) based approach [25]

due to its high efficiency for the closed-form solution and low

distortion stemming from the least square error.

IV. MOTION CAPTURE

In each frame, the foreground pixels are identified with

binary mask from ViBe [23]. The salt and pepper noise is

eliminated through a morphological opening operation on the

binary mask. Then we identify the connected components and

remove the components whose areas are too small, leaving the

salient components as foreground objects.

The system will start tracking once user selecting one

object. As shown in Fig. 1(a), an adaptive threshold image

segmentation method [26] is employed to eliminate the noise

caused by shadow . After we get an accurate contour of the

fish, the motion will be captured by our contour-based feature

extraction process. Here we list the motion attributes (position

or orientation) in Table I and label them in Fig. 2, where

u num and l num are the sampling numbers of the upper

segment and lower segment of the medial axis respectively.

TABLE I
FISH MOTION ATTRIBUTES

Attribute Explanation

center Fish center

m dir Major direction, representing the fish orientation

head Fish head

tail Fish tail

l fin The left pectoral fin tip

r fin The right pectoral fin tip

jun tl The top-left junction point

jun tr The top-right junction point

jun bl The bottom-left junction point

jun br The bottom-right junction point

up axis{1,2,...,u num} Sample points in the upper segment of the
medial axis, from center towards head

low axis{1,2,...,l num} Sample points in the lower segment of the me-
dial axis, from center towards tail

Fig. 2. Motion attributes of a fish.
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The feature extraction process can be divided into four steps:

global motion estimation, head and tail recognition, medial

axis extraction, and fin recognition.

A. Global Motion Estimation

The aim of this step is to estimate the center position

(center) and the orientation (m dir) of the fish. We use

PCA method to process the coordinates of all pixels inside

the closed contour to obtain the mean value, eigenvalues and

eigenvectors. The mean value that representing the barycenter

is assigned to center temporarily. As the barycenter will

sometimes drift apart from the medial axis when the fish forms

“C-shape”, we’ll update the value of center later after the

medial axis is extracted.

As for orientation estimation, we firstly choose the eigen-

vector with the larger eigenvalue as m dir. However, it is

possible the negative direction of the fish head. So the direction

of the eigenvector will be adjusted by the orientation of the

last frame so that the angle of the orientations between two

consecutive frames won’t be larger than π/2.

B. Head and Tail Recognition

The recognition of head and tail is straightforward. At

first, we calculate all the distances between contour points and

the barycenter. The point with the largest distance is treated

as tail. Then we divide the contour point sequence into two

equal-length segments such that tail is the midpoint of the

one, leaving head in the other. Therefore we can locate head
as the point with the largest distance in its’ own segment.

Occasionally, there could be a chance to misidentify head and

tail in reverse order. In case of that, we will use the orientation

m dir as a calibration. For general purpose, considering some

types of fish that have two tips in caudal fins, we will detect

whether there is another local max-distance point near tail as

the other tip. Then tail will be updated as the midpoint of the

two tips if the other tip is found.

C. Medial Axis Extraction

The core part of the motion is the fish medial axis, which

is drawn in red in Fig. 2. At the beginning, we divide the

closed contour into two segments, which is the two point

sequences from head to tail in different ways. Without

loss of generality, assume the number of points in the two

sequences is l1 and l2 with l1 ≤ l2. Then the coordinates

of the two sequences can be represented by p{1,2,...l1} and

q{1,2,...l2}. And the medial axis can be given by

mi =
pi + q� l2

l1 i�
2

, i = 1, 2, ..., l1. (1)

However, this strategy has one problem. As we can see in

Fig. 3(a) and (e), the fish contour is not smooth enough thus

is likely to produce a jagged axis. Under this circumstance,

we believe that a contour containing only low-frequency

information is more suitable to express the body shape, thus

can extract a more desirable medial axis. Spatial filter could be

a choice, but the parameters of the filter template need to be

set elaborately and the convolution process is time-consuming.

a d b c 

e f g h 

Fig. 3. The functionality of elliptical Fourier coefficients in medial axis
extraction. (a)Jagged medial axis extracted directly from the original contour.
(b)Smooth contour reconstructed by using elliptical Fourier coefficients.
(c)Smooth medial axis extracted from the reconstructed contour. (d)Sampled
points in the medial axis. (e)Biased medial axis caused by the asymmetric fins.
(f)Asymmetry is largely eliminated by the reconstructed contour. (g)Smooth
medial axis with little bias. (h)Sampled points in the medial axis.

Here we employ the elliptical Fourier coefficients technology

to handle it.
Elliptical Fourier coefficients model closed contour as sums

of elliptical harmonics. Each harmonic is described by four

coefficients, interpreted geometrically as major axis length,

minor axis length and the orientation of the ellipse. As shown

in [4], we regard the contour as two periodic functions x(t)
and y(t). For example, x(t) can be written as

x(t) = a0 +

∞∑
k=1

(ak cos
2kπt

T
+ bk sin

2kπt

T
), (2)

where T is the perimeter of the contour, t = 2πl/T , l is the

arc length from a preset starting point, and the coefficients can

be calculated as

a0 =
1

T

K∑
p=1

Δxp

2Δtp
(t2p − t2p−1) + ζp(tp − tp−1), (3)

ak =
T

2k2π2

K∑
p=1

Δxp

Δtp
(cos

2kπtp
T

− cos
2kπtp−1

T
), (4)

bk =
T

2k2π2

K∑
p=1

Δxp

Δtp
(sin

2kπtp
T

− sin
2kπtp−1

T
), (5)

with K being the number of points in the contour, Δxp =
xp − xp−1, Δtp =

√
(Δxp)2 + (Δyp)2, and

ζp =

p−1∑
j=1

Δxj − Δxp

Δtp

p−1∑
j=1

Δtj . (6)
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y(t) can be defined in terms of the coefficients c0, ck and dk
similarly.

After obtaining the coefficients from the original contour,

we use the first S harmonics to reconstruct a smooth contour

according to Eq. 2 with the same point number as origin.

The reconstruction result is shown in Fig. 3(b) and (f) with

S being 5. Afterwards, we use the reconstructed contour to

update point sequences p{1,2,...l1} and q{1,2,...l2}. Then the

medial axis can be extracted according to Eq. 1, as shown in

Fig. 3(c) and (g), which becomes much more smooth.

Since more feature points are required to represent the

curved body deformation in the lower part of the fish, we

sample the medial axis with different densities. We uniformly

sampled u num points in the segment of the medial axis

from center point towards head (up axis{1,2,...,u num}), and

l num points in the segment from center point towards tail

(low axis{1,2,...,l num}). The result is illustrated as Fig. 3(d)

and (h) with u num begin 3 and l num being 15.

D. Fin Recognition

Besides describing the body shape, the medial axis can offer

a great help to locate the fins. We divide the contour into two

segments with head and tail as the breakpoints, then find

the point with the largest distance to the medial axis in each

segment as the left or right pectoral fin’s tip (l fin and r fin).

Note that we only extract the pectoral fins of the fish, for the

pelvic fin and dorsal fin are usually occluded by the fish body

thus can hardly be recognized consistently.

P 

Q 

R 

Q

Fig. 4. The recognition process of jun tr. P denotes the head, Q denotes
the right fin tip, R is an assistant point, and S denotes the recognized jun tr.

The remaining task is to locate four junction points (Fig. 2).

The method to find each junction point is basically the same,

so here we only describe how to find the upper junction

between right fin and body (jun tr). For the contour segment

from head to r fin (Fig. 4), supposing P represents head
and Q represents r fin, we search a point R on the contour

segment between P and Q to ensure � PQR is the maximum.

Then the position of the point among the segment Q̃R with

the largest distance to the line
−−→
QR is regarded as jun tr.

V. MOTION RETARGETING

Before motion retargeting, We need to construct a target

model from 2D pictures or 3D meshes for retargeting. As

shown in Fig. 1, the 2D target model is constructed from

a hand-drawn cartoon fish. We use a Canny edge detector

to generate an edge image in binary mask, from which the

contour is detected. Control points can be extracted from the

contour-based feature extraction process which is basically the

same as the detail in section IV. The mesh is generated from

the contour by constrained Delaunay triangulation [24]. The

texture of the model is also attached (Fig. 1(b)).
For 3D fish model, we can directly import the mesh and

texture into our system. In order to generate the positions

of control points, we use PCA to calculate three principle

directions then apply a translation and rotation to the model,

making it lying on the x-y plane, with its center at origin,

head pointing to the positive y axis. A 2D snapshot is taken at

the top view of the model, from which control points can be

extracted with planar coordinates. Then we recover the control

points to the 3D scene with z = 0.
The retargeting part consists of three stages—body motion,

fin motion and global motion. The first two stages are the core

part of the two-level retargeting scheme we proposed, and the

last stage aims to retarget the global motion.

a d b c 

Fig. 5. Our two-level motion retargeting scheme. (a)The tracked fish.
(b)Extracted contour and feature points. (c)The deformed implicit model with
body control points. (d)The deformed explicit model with all control points.

In fact, we have two fish models constructed after target

model construction. One is an implicit model which only

works during body motion retargeting. The other is an explicit

model which is utilized in the fin motion retargeting and

displayed on the screen finally. The implicit model only

has body control points while the explicit model contains

all control points. In addition, the four junction points are

added to the implicit model as ordinary vertices, thus can be

transformed during body motion retargeting. For explanation,

we define the implicit model I and explicit model E:

I =< V,C >,E =< V,C > (7)

where V denotes the vertices

I.V = {v; jun tl, jun tr, jun bl, jun br}, E.V = {v}
and C denotes the control points

I.C ={center,head, tail,up axis, low axis}
E.C ={center,head, tail,up axis, low axis,

jun tl, jun tr, jun bl, jun br, l fin, r fin} (8)

and v denotes the vertices generated from the triangulation

process. Meanwhile, we have the recorded motion M

M ={center,m dir,head, tail,up axis, low axis,

jun tl, jun tr, jun bl, jun br, l fin, r fin}. (9)
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To deform the target fish model, the motion structure of the

target fish should be analyzed. Here we use a simplified curve

skeleton L to represent the structure of the fish model.

L ={body len, head len, tail len, l fin len, r fin len,

up len{1,2,...,u num}, low len{1,2,...,l num}} (10)

The construction of L is described in Algorithm 1, which is

executed only once after the target model is constructed.

Algorithm 1 Simplified Curve Skeleton Construction

Input: Explicit model E
Output: Bone length L

1: Compute head len and tail len of L as the distances

between head, tail and the uppermost, the lowermost

ending sample points in the medial axis of E.

2: Compute up len and low len of L as the piecewise

lengths of the sampled points in the medial axis of E.

3: Compute l fin len and r fin len of L as the length be-

tween E.C.l fin and E.C.jun tl and the length between

E.C.r fin and E.C.jun tr
4: L.body len =

∑u num
i=1 up leni +

∑l num
i=1 low leni +

L.head len+ L.tail len

A. Body Motion Retargeting

The details of implicit model deformation are described

in Algorithm 2. We choose angular variance as a motion

parameter transferring between feature points of the actual fish

and control points of the fish model.

Algorithm 2 Implicit Model Deformation

Input: Implicit model I , bone length L and recorded

motion M
Output: The deformed implicit model I

1: head angle = angle(M.head−M.up axisu num)
2: tail angle = angle(M.tail−M.low axisl num)
3: v1 = [M.center,M.up aixs1, ...,M.up aixsu num−1]
4: v2 = [M.center,M.low aixs1, ...,M.low aixsl num−1]
5: up axis angle = angle(M.up axis− v1)
6: low axis angle = angle(M.low axis− v2)
7: I.C.center = 0
8: Sequentially construct I.C.up axis according to

L.up len and up axis angle
9: Sequentially construct I.C.low axis according to

L.low len and low axis angle
10: I.C.head = polarcart(L.head len, head angle)+

I.C.up axisu num

11: I.C.tail = polarcart(L.tail len, tail angle) +
I.C.low axisl num

12: Deform I.V according to I.C

The function polarcart(len, angle) is used to translate

coordinate from polar coordinates system to Cartesian co-

ordinates system. We employ a moving-least-squares based

method [25] to deform the target model. Its closed-form solu-

tion can provide high computation performance. Meanwhile,

unlike some other deformation approaches [27] [28] which

require control points must be the existing vertices of the

mesh, this method allows control points to be added at any

positions, thus provides convenience for our sampled medial

axis points (up axis and low axis) editing. After body

motion retargeting, we can obtain an intermediate result of

the target fish model (Fig. 5(c)), in which the fish body is

deformed but the fins remain the same as the rest pose.

Algorithm 3 Explicit Model Deformation

Input: Explicit model E, bone length L and recorded

motion M
Output: The deformed explicit model E

1: Copy the positions of the body control points from I.C
to E.C.

2: Copy the positions of the deformed four junction points

from I.V to E.C.

3: l fin angle = angle(M.l fin−M.jun tl)
4: r fin angle = angle(M.r fin−M.jun tr)
5: E.C.l fin = polarcart(L.l fin len, l fin angle)+

E.C.jun tl
6: E.C.r fin = polarcart(L.r fin len, r fin angle)+

E.C.jun tr
7: Deform E.V according to E.C

B. Fin Motion Retargeting

Once the implicit model I is deformed, the positions of the

four junction points are determined. Then we can generate the

target locations of fin tips and retarget the fin motion to the

explicit model E. The details are described in Algorithm 3.

The result is shown in Fig. 5(d).

C. Global Motion Retargeting

After the first two stages, we are able to retarget the local

motion accurately to the fish model. In the end, we need

to transform the deformed model E to world coordinates,

including a rotation and a translation. The rotation angle can

be directly determined by orientation M.m dir, while the

translation distance needs to be adjusted to meet the difference

of the scales between the actual fish and the target model. Here

we use a straightforward way to obtain the position of the fish

model E after translation as

E.C.center =
L.body len

init len
M.center, (11)

where init len is the medial axis length of the actual fish

which is recorded in the first tracking frame. Note that we let

the user to select the first tracking frame in order to make such

translation distance adjustment simpler and more intuitive.

Finally, for the smoothness of the final animation, we lin-

early interpolate 5 animation frames between two consecutive

video frames, and use Kalman filters to estimate the control

points’ positions in each frame.
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VI. EXPERIMENTAL RESULTS

We have implemented the system using C++ and OpenCV,

and all the experiments are run on an Intel(R) Core(TM) i5-

6400 CPU (2.7GHz) with 8GB RAM. A video of a goldfish

is captured by a monocular camera with a resolution of

1920x1088 pixels yet we resize it to 960x544 pixels to process.

For 2D animation, we use a carp and a cartoon fish as the

target models. For 3D animation, we use a whale as the target

model. We also deliver a hand-drawn mermaid and a flower

picture to the system, to test the motion retargeting effect of

our technique for other fish-like characters. Fig. 6 shows the

results. The parameter setting and performance statistics are

listed in Table II. The memory consumption is in the range of

130MB to 200MB proportional to the number of vertices.

The current implementation is not time optimized and the

entire pipeline can operate at around 20 FPS. We also compare

our technique with others’ work. The only research we have

found in data-driven fish animation is presented by Lee et al.
in [13]. However, they haven’t shown any convincing figures

or tables. Other similar work such as [29] and [30] concen-

trates on detection and trajectory tracking which is similar

to the global motion estimation task under our framework

(their methods can handle multiple fishes yet). Since we hardly

find other valid researches for motion capture for fish, we

compare our method with several video-based mo-cap systems

for human [8] [9] [10]. The comparison result is shown in

Table. III which is made with results published by peers. Given

the image size and camera number, our time cost is competitive

among video-based mo-cap systems.

VII. CONCLUSION AND DISCUSSION

In this paper we have presented a novel framework of

fish motion capturing and retargeting. The fish motion can

be captured by a monocular camera without resorting to any

marker. We employ elliptical Fourier coefficients to analyze

the swimming patterns of a fish. The fish motion was repre-

sented in a robust way, with smooth medial axis serving as the

descriptor for the soft fish body. We also proposed a two-level

motion retargeting scheme to properly transfer the captured

motion into fish-like models. The system can then drive a

static pictured fish to swim with the same motion style of

the actual fish in real time. Besides, 3D models and fish-like

characters can also be animated vividly in this framework.

Nevertheless, our technique still suffers from several limi-

tations. First, our technique can only capture the fish motion

from the top view, thus is unable to acquire the fish’s visual

information from the side view. Second, the simplified fish

model we employ limits the generalization of our system.

For example, we cannot model the complex fin motion of a

lionfish, or the body motion of a porcupine fish. Finally, the

fish needs to move properly in a small aquarium to be tracked.

Our grand motivation in this paper is to showcase a cheap

yet effective way for the general public to create data-driven

fish animation with a low-end mobile device. In the near

future, we plan to migrate this system to a cellphone platform,

so that any cellphone user could capture a swimming fish in a

pool or aquarium and generate a fish character animation in an

augmented-reality (AR) environment. The proposed method

for medial axis extraction can be extended to describe the

shape of flexible objects. Its high efficiency makes it competent

in real-time applications. The two-level motion retargeting

scheme can be considered as a novel combination of point-

based deformation and forward kinematics, and can be easily

generalized to a multi-scale scheme. Such combination greatly

enlarges the range of retargeting models—making the motion

retargeting process much more easily accessible between mod-

els that have similar structures at the corresponding scales.
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2D feature tracking and volume reconstruction for online video-based
human motion capture,” International Journal of Image and Graphics,
vol. 4, no. 04, pp. 563–583, 2004.

[9] B. Michoud, E. Guillou, and S. Bouakaz, “Real-time and markerless
3D human motion capture using multiple views.” in Human motion:
understanding, modeling, capture and animation, 2007, pp. 88–103.

[10] A. Shafaei and J. J. Little, “Real-time human motion capture with
multiple depth cameras,” in Computer and Robot Vision, 2016, pp. 24–
31.

[11] E. Ju, J. Won, J. Lee, B. Choi, J. Noh, and M. G. Choi, “Data-driven
control of flapping flight,” ACM Transactions on Graphics, vol. 32, no. 5,
p. 151, 2013.

[12] J. Wilhelms and A. V. Gelder, “Interactive video-based motion capture
for character animation,” in IASTED Computer Graphics and Imaging
Conference, 2002.

[13] C.-N. Lee, W.-C. Hsieh, D.-J. Zhang-Jian, and Y. Yang, “3D fish anima-
tion with visual learning ability,” in Asia-Pacific Signal and Information
Processing Association (APSIPA). IEEE, Dec 2014, pp. 1–4.

[14] Q. Yu and D. Terzopoulos, “Synthetic motion capture: Implementing an
interactive virtual marine world,” The Visual Computer, vol. 15, no. 7,
pp. 377–394, 1999.

[15] J. Shi and C. Tomasi, “Good features to track,” in Computer Vision and
Pattern Recognition, June 1994, pp. 593–600.

[16] D. Comaniciu, V. Ramesh, and P. Meer, “Real-time tracking of non-rigid
objects using mean shift,” in Computer Vision and Pattern Recognition,
vol. 2, 2000, pp. 142–149 vol.2.

868686



Fig. 6. Sample frames in our experiments. The top row contains nine clipped frames from the video. The remaining five rows are the corresponding animation
frames of the target models. The target models from top to bottom are carp, cartoon fish, 3D whale, mermaid and flower. The first column on the left shows
the rest poses of the target models.

TABLE II
THE EXPERIMENTAL PERFORMANCE STATISTICS.

Target Model # Vertices # Triangles u num l num S

Tracking
Motion
Retargeting

Rendering
Total
Time Cost

Background
Subtraction

Filter
Feature
Extraction

Carp 2445 3827 3 15 5

16.51ms 10.03ms 8.10ms

1.13ms 12.92ms 48.69ms

Cartoon Fish 2667 4136 3 15 5 1.25ms 12.06ms 47.95ms

3D Whale 6003 9200 3 15 5 8.16ms 12.71ms 55.51ms

Mermaid 3033 4710 3 15 5 1.48ms 12.38ms 48.50ms

Flower 3492 5431 3 25 8 2.38ms 12.07ms 49.09ms

TABLE III
TIME COSTS FOR ONE-FRAME PROCESSING.

Method [8] [9] [10] Ours

Camera Number 4 3 4 1

Image Size 320x240 320x240 250x250 960x544

Average Time 236.5ms 33ms 33ms 49.94ms

[17] M. Gleicher, “Retargetting motion to new characters,” in Computer
Graphics and Interactive Techniques. ACM, 1998, pp. 33–42.

[18] H. J. Shin, J. Lee, S. Y. Shin, and M. Gleicher, “Computer puppetry: An
importance-based approach,” ACM Transactions on Graphics, vol. 20,
no. 2, pp. 67–94, April 2001.

[19] K. R, M. F, and B. Arnaldi, “Morphology-independent representation
of motions for interactive human-like animation,” Computer Graphics
Forum, vol. 24, no. 3, pp. 343–351, 2005.
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